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SUMMARY

Robust estimates for the parameters in the general linear model are

proposed which are based on weighted rank statistics. The method is based
on the minimization of a dispersion function defined by a weighted Gini's
mean difference. An asymptotic distribution of the estimate is derived.
Some examples are discussed which point out that the ranking can be based

on a restricted set of comparisons and still retain high efficiency.
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1. INTRODUCTION

Consider the linear model

(1.1) Y= Bo 1+Xg +e,

]
where Y = (Y,,...,Y) is an n x 1 random vector, 1 is an nx1

vector with each element equal to one, X = (xii) is an n x p design

matrix, B = (31, e Bp)' is a p x1 vector of parameters and
e= (el, eniey en)' is an n x 1 vector of random errors. Assume that
€585 .0 are independent with a common distribution having density

function f . The residuals are given by Z = (z1 s sisre ,Zn)' where
Z=2(8)=Y-XB.

Methods of estimation of E are typically based on some principle
of making the residuals small. The classical least-squares approach is
to minimize the sum of squares of the residuals. The resulting estimate
is optimal under normality assumptions. However, the least-squares
estimate is not robust in the face of departures from the model. It can
be inefficient when the error terms follow a non-normal distribution and
it can be very sensitive to outliers and high leverage points in the
design matrix. These problems with least-squares estimates have spurred
the development of other types of estimates which are more robust.

There has been considerable work in recent years on the M-estimate
approach and on the method of minimizing the sum of the absolute values

of the residuals (Least Absolute Deviation estimates). Methods based on
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1 rank statistics have also been proposed. With regard to the rank statistic
approach, basic material can be found in the papers of Jure¥kova (1969),
(1971); Koul (1970), (1971); Adichie (1978) and Sen-Puri (1977).

Jaeckel (1972) has discussed the value in using a dispersion function
and in defining the estimates to be the values of the parameters that
minimize the dispersion of the residuals. He showed how estimates based
on linear rank statistics can arise with a suitable choice of dispersion
function. This approach has been further extended by Hettmansperger and
McKean (1976), (1977), (1978b).

This paper will examine the estimate of B that arises with a dis-

persion function defined as a weighted Gini's mean difference. Gini's
mean difference is a familiar measure of dispersion and it has been pro- iL

posed for the linear model problem by Wainer and Thissen (1976). The use '

of weights adds greater flexibility. The asymptotic theory of the partial
derivatives of the dispersion function will be examined and an asymptotic
linearity result is given. This dispersion function is shown to be
asymptotically, locally quadratic. These results are used to establish

the asymptotic distribution of the proposed estimate of B . The paper

concludes with some comments on the weights and some applications. Proofs

of the theorems can be found in the Appendix.

g
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2. THE DISPERSION FUNCTION

Consider the dispersion function

(2.1) D=D(B) = } bijlzi -z
i<j

Jl'

where the bi >0, 1<41i<j<n are a given set of weights. Each pair

3
of residuals is compared by the absolute difference and the weight that is
attached can reflect the importance of the comparison. Note that the
weights can depend on the design matrix § . It is pc;ssible to have some
of the weights equal to zero and this will drop some pairwise comparisons
from consideration. The gpecial case of equal weights, b 13 =1, gives
rise to Gini's mean difference. Hettmansperger and McKean (1978a) have
shown that this dispersion function 1is equivalent to Jaeckel's dispersion
function with Wilcoxon scores.

The dispersion function D can be expressed in another form. Let
(R1 o o Rn) denote the ranks of the residuals; that is, R:I. is the
rank of Z, in the set {z,,...,2}, 1<4<n. Let sga(v) =

41, 0, -1 as v is >0, =0, <0 . Extend the definition of the =

weights bij to all subsczipts i, j=1,...,n by using bj:l.' = bij
and b:l.i = 0 , Then, using |v| = v sgn(v), some manipulation shows
n
(2.2) p= ] B2,
i=1

with Bi- 2 bulp(zi-zj), w1, i0ep N
I
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The coefficients Bi are random with Bi depending on the rank of zi
and also on the subscripts of the residuals that are less than Zi . In

the special case b,, =1, B, = 2Ri - (n+1).

ij i
Another dispersion function which is similar to D is

p* = ] bylzy -2l o
1<)

in which the weights correspond to the ordered residuals Z(l) < e f-z(n) .

It can be shown that

n n

* = * =

D ) BRi z ) BY 24y >
i=1 i=1
i-1 n

* = =

where B =] by i by

j=1 =i+l

In this form, it can be seen that D* 1is equivalent to Jaeckel's disper-

sion function with the B¥*

i serving as the score function. If bij — (S

~then D = D*, They are not equal in general. This shows that the weights

used in D serve a different purpose than the score function used by

Jaeckel.

T — ,,l'. i aing i bl D A i e et



3. PARTIAL DERIVATIVES OF D

To estimate the parameter E » consider using a point in the para-
meter space which minimizes the dispersion function D(E) of (2.1). This
function is nonnegative, piecewise linear and convex. Various numerical
methods, including linear programming algorithms, can be used to determine
an estimate. The solution is not unique in general. However, under some
conditions, it follows from the work in section 5 that the diameter of
the set of solutions tends to zero asymptotically.

The partial derivatives of D should be (approximately) equal to

zero at the minimum. Using form (2.2), these derivatives are

n
3.1) aD/2B, = - ] B, X,

i=1
for k=1,...,p, at points B where they exist. Another form of the

derivatives, that can be seen by writing D = 2 bij sgn(zj - zi)(zj - zi)

1<)
is

W/ =~ I by sgﬁ(zj - 2) (g - xy)
1<3 ;
(3.2)

--27 %ﬁﬁk'ﬂﬁ“ﬁ’%)+i- byy Xy = Xy)
1<j 1<3 '

where ¢(uyw) = (sgn(v-u) +1)/2=0, 1/2, 1 as u>v, u=v, u<v,
In this form, the derivatives can be seen to depend on the rank order of

the residuals. They involve a general type of random variable of the form
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E 2 aij ¢(Z1 ,ZJ) , which will be considered in more detail in the
. o

i next section.

; The form of the derivatives in (3.2) can be changed to

ap/3g, = ] bijlxjR - x| sgn(x,y - x; )sen(Z; - Z,),
i<j

for k=1, ...,p . This is a "weighted" Kendall's tau random variable
for Z wvs x - Thus when the partial derivatives are zero, the residuals
are uncorrelated with the independent variables in this nonparametric
sense. This is directly analogous to the least-squares approach where

the least-squares estimate of g can be defined by specifying that the
residuals be uncorrelated (Pearson product moment correlation) with the

independent variables.
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4. A GENERAL CLASS OF RANDOM VARIABLES

In this section a general class of random variables, related to the
derivatives of the dispersion function, is defined. An asymptotic
normality result is given with the proof delayed until the Appendix.

For each k=1, ..., p, let a set of constants

{aij(k): 1<1<3j<n} be given. Let

n
a, (k) =] a; ;) for 1=1,...,na~-1
J=i+1 .
3-1
a.j(k) = Z aij(k) for § =2, e 50
1=1

a, =0, a =0, a (=] a;
i<j

A = a () - a (K .

For asymptotic purposes, a sequence of these constants is needed, indexed
on n=1,2,..., but this dependence on n will be suppressed in

the notation. In a similar fashion, the dependence on n of other quantities

will not be indicated in the notatiomn.
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ASSUMPTION (ALL: For each k=1, ...,pP

n
2
ke
i=1
2
max Ai(k)
1<i<n

% as n *+ o ,

ASSUMPTION (AZL: For each k=1, ...,p

2
zi<jaij(k)

I a2
A (k
4=1 1

Define the random variables

i<j
for k=L, ..o 5D where ¢(u,v) =0, 1/2,1 as u>v, u=yv,
u<v, Let T =T(B) = (T1 5 S ,Tp)' be the p x 1 vector of these
random variables. Note that this type of random variable arises in the
derivatives of the dispersion function in (3.2) with the correspondence
aij(k) = bij(xjk - xik)' Specifically,

In order to consider the asymptotic distribution of T(B) , the

following notation is introduced.

s S——

Y =

I e BRI
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Specify a sequence of parameter values, contiguous to 0 by assuming

é = A/ /n, where A' = (Al, S alacs Ap) is a fixed vector.

Let the centered design matrix be X, = (In - (1/n)Jn)x , where In

is an n x n identity matrix and J isan nxn matrix of '"ones".

h

Let ;k be the average of the kt column of X, ‘k=1,..., p .

Let An be an n x p matrix with (i, k)th element equal to

Ai(k)’ i=1,...,n, k=1,...,p, and let Yn-f:'xén’ Let

al = (a, (D,...,a (@) andle ul= (@A), ..., u ()=

() AVX B + (1/2)a,,

ASSUMPTION (A3Z: For k=1, ...,p

Iz - x|

———a———" ' 0 as

Y

amx; X, > 2

7

where I is a p xp , positive definite matrix.

ASSUMPTION QASL: There exists a sequence of constants {y n}' such that

YnYn.’Y“ n-+o

where V is a p xp , positive definite matrix.
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THEOREM 4.1 Assume the error demsity f 1is absolutely continuous and

[(£'/5)% ax <= . Let assumptions (A), (&), (&), (&) and (A)
hold. Then, if B8 = 4//a,

o -u) & wo, anzv

The notation " LB "reads '"converges in distribution". A

translation property of the result can be noted since

g < '
T ls, == O o == 16 - B3] o - Bax B, o mafesiio

the distribution of T(Bl) when B = 82 c
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5. ASYMPTOTIC LINEARITY

In this section, a local, asymptotic linearity result is given for
T(8) . The proof can be found in the Appendix.
Let I_S- (Al""' AP)' denote a p x 1 vector and let ¢ >0

be given. Define aset 9 = {A:-c< 4 <c, k#®1oiis s Phs
Let a p x p matrix gn be defined with (k, 2)th element

2
e, = -UE) ij 8, () (xyp = X))« Let

.1 R@) = o~ 22[1a//) - T - C @/ .

Let G(y) = P(el -e < y) denote the cdf of the difference of
independent random variables, each with density f .

Let Il -[l denote Euclidean distance.

ASSUMPTION (A): The cdf G has adensity 8= G' and g(y) 1is

continuous at y =0 .

ASSUMPTION $A7)_. For each k=1, ...,P

) ai 3 (k)
O .. - is bounded as n + * ,

n
)
LEMMA 5.1 Let assumptions (A3) ’ (Al;) ’ (A6) and (A7) hold. If

g =0, then R(A)ir-vo , uniformly in A e & . (That is, for all

c>0 and & >0, there exists N such that P(|| R[] 2¢) <&

for all n> N and all Ac §.)
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|

The lemma shows that T(B) can be approximated by the linear function
T(0) + CnB asymptotically for B sufficiently near zero, however the J
result is not strong enough for the application needed. A stronger result

is given in the following theorem.

i
1
|
‘,
THEOREM 5.1 Let assumptions (A;), (4,) ’(Aﬁ) and (A7) hold. If i
B=0, then sup, g “R(A)” £ 0 as n *®, |
~ |

|




6. DISTRIBUTION OF 3

The estimate of E has been defined to be a point in the parameter
space, say én , Wwhich minimizes the dispersion function D(g) of
(2.1). The set of solutions to this minimization problem is bounded as
seen by the following lemma. The.proof of this lemma is exactly the same

as that of Theorem 2 of Jaeckel (1972).

LEMMA 6.1 If the centered design matrix xc is of full rank p ,

then {B: D(B) <D  } is bounded for any number D, .

In order to deal with the asymptotic distribution of Bn , it is

convenient to work with An = /;'Bn and define

D*(A) = (1/a)D(A/Vn) .
Then En minimizes D*(A) .

To match the dispersion function D* to the T victor of section 4,

use the correspondence

Then from formula (4.1), the vector of partial derivatives is

aD*(A)
ae d n-3/2[-zr(A/¢53 +a 1.
aA - ™ -~
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With (6.1) we can give more definite expressions for some matrices
that were defined earlier. The elements of the matrix A.u of section 4
are linear functions of the elements x of the design matrix and with

1]

some manipulation, write
A =B X,
-0 .n .

where Bn is an n x n symmetric matrix involving the weights of the
dispersion function. Specifically, define the (i ,j)th element of
th

?n to be -bij if i <j and -bji if 1> . The 4 diagonal

element of ?n is bi = Xj+i bij . Thus En has the negatives of

the dispersion function weights for its off-diagonal elements and positive

diagonal elements determined so that the row sums are zero. Also write

V =A'A =X'B
i g R Es

x .
-n N

n .

Again with (6.1), the matrix Cn of section 5 will have (k ,l)th

element ckl"'(f £2) Zi<j bij(xjk - xik)(sz - x;,) . With some

further manipulation, it follows that

= 2 '
Ca -t § ?n o

The matrices Vn and Cn have been expressed directly in terms of

the design matrix X and the weight matrix Bn . Since the réw (and

column) sums of Bn are zero, the centered design matrix could be used with




o

AR AR SR 8 T e i g ’ " - —

=1 5=

- X!
Yn Ec ?n ?ﬂ §c

2421
Cy® R X X

ASSUMPTION (ABL: With (6.1) holding,

(lluz)cn + C as n+®

where C is a p x p matrix of full rank.

Now define a quadratic function of A to use as ‘an approximation to

D*(a) by

Q) = -8' ¢ & + 0% a, - 21@1'8 + D) .

Then

L ~3/2
gact o 20T

[a,, - 27(0)] .

LEMMA 6.2 Let assumption (Ag) hold along with the assumptions of

Theorem 5.1. Then

P

n3/2CA|| — 0 as n+>,

supye g 3 Il TWHR) - TO) -

LEMMA 6.3 Let the assumptions of Lemma 6.2 hold. Then

3Q(8) aD*(A) P

lup“‘" 3 ) as n +® ,

6.4 Let the assumptions of Lemma 6.2 hold. Then

:

P
8Up, o IQ(e) - D*(e)l——v 0 as n+e

Yl Rl M 2 bk SN -+

——
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Having established that Q(é) can be used to approximate D*(e) »
it will next be shown that e values minimizing these functions must
be close enough to have the same asymptotic distribution .

On setting the partial derivatives equal to zero, Q(e) is

minimized at the point

3/2

st =02 chrama | - 1O .

THEOREM 6.1 Let assumption (A8) hold along with the assumptions of

Theorem 5.1. Let assumption (AS) hold with e n?3 . Then An and
A: are asymptotically equivalent. (See definition on page 1453 of Jaeckel

(1972).)

Now if Theorems 4.1 and 6.1 hold, when B8 = O-

© =372 &
n ~'°[T(0) - (1/2)a, ] —+ N(O, (1/12)V) as n =+ =

It follows that A: is asymptotically N(O, (1/12)C°1 v C-l) and

the following : result is immediate.

COROLLARY 6.1 Under the assumptions of Theorems 4.l and 6.1, when

B=20

~

/n Bn = Zn is asymptotically N(O ,(1/12)C"1 ve

1

) .

Note that from the translation invariance of the estimate,

. < *
/i(?n -9)18 - En‘O 4
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1 1

! v ¢! 415 used as am approximation to C ~ V C ~ , the

1If nC
P « § ~N .n -

asymptotic covariance matrix of Bn is approximately

coviy = any oty

(6.2)
- am(ha s, prlat s 3 pary 7

Note that xc can be used in place of X in this formula. It should

, be emphasized that cov(Bn) is not the exact covariance matrix. In
i spite of this, formula (6.2) may prove useful in examing the effect
of different weight matrices on the estimate.

For the special case b 1j = 1, the unweighted case,

Bn = n(z.n - (lln)fn) and

(6.3) cov(d)) = Wr2(feHd @ x)™ .

Note that cov(B u) - depends on B through the matrix H=3B X

since [(X' B  X)(X' B B/ x)’1(§' B x)]'1 = [x' H@E' 13)'1 B X]71 . The

matrix H(H' H)_l H' 1is a projection matrix, the projection being into

Po——

the column space of H .
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7. THE WEIGHT MATRIX Bn

In the unweighted case, bij =1 and gn = n(}n = (1/n)gn). This
is a benchmark case because of its simplicity. It also yields the highest
asymptotié efficiency as can be seen by expressing the difference of the

covariance matrices (6.2) and (6.3) as (excepting the constant multiple)

] =14 ' =1 = ' =1 - (]
({‘c ?n )}c) ()fc En En }fc) (}Ec l..;n }Ec) (}..{c 1.50) Ij !.4 |

=1 =1
= ] 1 e ] (] '
e ! (gc ?n §c) gc ?n (gc gc) §c - The m?trix § ! e

positive semidefinite and as a result the trace and determinant of (6.2)

M

cannot be less than that of (6.3).

Formulas (6.2) and (6.3) are equal if and only if M =0 or

-1 -1
] ' = ) v & §
(§c B %c) X B, (§c §c) X, . Equivalently, B X, |E
1] -1 (] (] -1 [] E
§c(§c §c) §c En §c . Since §c(§c %c) %c is the projection map ;
into the column space of X, , the equality will hold if and only if, |
the columns of § gc are in the column space of §c (gn §c = §c g s

1 for some p x p matrix G ) .

The preceeding work indicates that the use of weights b1j # 1
cannot increase the efficiency of the estimate over the unweighted case.
It may be possible to choose weights so as to lose little or no efficiency

and yet gain in some other respect. This matter needs further study.

P

By using weights bij =0 or 1 we can reduce the number of terms

in the dispersion function D by reducing the number of comparisonms.

T =3




n
D =1 (2R, - (#C, + 1))z,
vhere C, = {j: byy=1, 1<j<n, 3441} , the number of elements 1
2
in C, 1is denoted by #Ci and R, 1s the rank of Z, in the set »
! q
{Zj: e Ci ) A ‘
The weights bij are associated directly with the observations (not Y
on the ordered observations) and can be chosen to depend on the design 3
matrix X . It may be possible to reduce the effect of high leverage
points in the design matrix with suitable choice of weights.
When Xé xc is nearly singular, the use of weights can reduce the 1

-19- : 3

This may have computational advantages. Some examples in a later section
sﬂow that there need not be a loss in efficiency. With such a choice
of weights the dispersion function depends on "restricted" ranks of the

residuals Z1 . Specifically, using form (2.2),

effects of multicolinearity.

One possible approach to setting the weights is to assign a weight

w, for each observation i1 =1, ...,n and the use bij = win y & + 3.

i

Assume that Z:-l v, = 1 for simplicity. Define an n x n diagonal
matrix W to have 1th diagonal element vy and a vector w =

(wl, e "h)' . Then the weight matrix is

- g
=@y =WIIWL, -3 W
* (@, =WIW-ww)(I, -3, W .
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Note that Bn X has (i ,j)th element wi(x x*), where

5y
xg e T xij is a weighted average of the jth colum of X .

Bn X 1is then a "weighted", '"centered" design matrix. Overall, this

approach seems to be worth further consideration because it is a simpler

task to assign n individual weights than to deal with (;) pairwise

weights.
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8. EXAMPLES

Example 1 Suppose there are o, observations (Group 1) following the

model

i-l,...,ul

= B B P ¥ E 3 i

ip

and another o, observations (Group 2) following the model

= R% LI * = =
Y:l Bo+61xil+ +Bpxip+ei' i u1+1....,n1+n2 n.

Note the different intercept parameters and different error variables with
possibly different distributions. Actually, the possibility of different
error distributions has not been covered in the work of this paper, but
the necessary modifications should be possible. Suppose the goal is to
estiqate 81 8 wos g Bp . In some situations it may not be appropriate
to compare observations in different groups. The groups may refer to
different types of people, locations, times or some other blocking
variable. In such a case, the between group comparisons can be excluded
by using

1/ny if 11'1<jin1

byy = 1/n, 1f n;+1<4i<j<n +n
0 otherwise.

L
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Then

D=Q/my) 1z - zjl ) 1 |2, - zjl

1<j5pl n1<1<j T
and the weight matrix is
I - (1/n,)J 0
~ny 1 ~n1 i
Bn =
i 0 I =)l
i ~n, 2 ~n,

This is an idempotent matrix and the covariance formula (6.2) reduces to
(8.1) cov(By , +ev s B) = aaxfsh®ye ot

The usual approach to the analysis, when the error variables all have

the same distribution, is to define an indicator variable for groups

0 if 1 <1i<n

X,pHl T

1 if n, < i<n, +n,

and add this term to the model. Then use bij = 1, the unweighted
dispersion function. From formula (6.3), wusing an augmented design

matrix X* with the additonal columnm,

~

cov(él, Vs 9p : Bp,d) - (1/12(If2)2)(§g' gg)‘l .
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When the covariance matrix of 81. fetely Bp is determined in the usual

Qay, it is found to agree exactly with (8.1). Thus both methods yield
the same asymptotic covariance matrix for the estimates. The omission
of the between group comparisons does not affect the efficiency of the

estimates.

Example 2 (One Factor Analysis of Variance) Suppose there are p + 1

groups of observations with sample sizes Dy ,0y ;5 cee ,np+ s D= Zk o -

The usual model is

Yi = Bo =+ 81 x5, t 0 + Bp xip +ey

if 1= nj BEL s eeie nj + nj+1

otherwise,

for {=1,..., n, j=1,...,p . The design matrix is
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where 0 and 1 are column vectors of appropriate size. This is the
usual "shift" model with location parameters 80 . BO + 81 el 80 + Bp
for the p + 1 groups.

Suppose that for the dispersion function D we use weights

1 if subscripts i and j are from different groups

ij

He

0 if subscripts and j are from the same group.

Then the weight matrix is

mII -J S c -J
-J m,I Sl -J

B = . . . . . .

~n . . . . . . ?
= XU R e R

th
where mi Zk+i nk is the number of observations outside of the 1

group and I and J are appropriately sized identity and unit matrices.

With this choice of weights, only the between group comparisons are used.

A

Formula (6.2) gives the covariance matrix of B wusing the above Bn matrix.




-
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As an alternative, all comparisons could be made with b1 =1 .

~ 3
Then the weight matrix is a multiple of B; = In - (1/n)Jn . It can

be shown that the covariance matrix of B is the same using B: as it

is using Bn . This shows there is no loss of efficiency in dropping

the within group comparisons. In fact, the estimates B are identical

for these two cases since the terms involving within group comparisons do

not involve any parameters and cannot affect the minimization process.

Another interesting point will be illustrated with a special case.

Suppose p = 3 and there are equal sample sizes n =m, k=1,2,3, 4.

Suppose that comparisons are only made between adjacent groups in the
dispersion function; that is groups l1vs 2, 2vs 3 and 3 vs 4 .

The corresponding weight matrix is

mI = 0 0

-3 2m -3 0

B 0 w3 2ml oF

0 0 -3 ml

By direct computation,

ok
@ B0 lx BB X® BX)L - (1/m) 1 %% %
$§ 1 3

1f all comparisons are made, B* = I - (1/4m)J and

emiliads i s o o




(X' B* X)'l(x' B* B* X) (X' B* X)’l = (1/m) 5 B ¥

Thus the approach with adjacent group comparisons yields the same cov-

ariance matrix as the usual approach with all comparisons. This

suggests that there is considerable redundancy in making all comparisons.
The possibility of restricting the number of comparisons, without

a loss of efficiency, may be especially useful in more.complicated fixed

 effect designs. Such designs can be viewed in terms of a one-way layout

with the parameters of interest being contrasts in the location parameters

of the groups.

|
l
!
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9. APPENDIX

Proof of Theorem 4.1

Let w1-81x11+---+epxip, i=1,...,n, and w = Ziviln.
Let 6 = (91 Nisreielly ep)' be a fixed p x 1 vector and without loss of
generality in what is to follow take 6' 6 =1 . Consider a linear

- - ' =
combination U U(E) g 'E(g) Zi<j hij“zi' zj) , Wwhere

hij-elaij(1)+...+epaij(p), 1<1i<j<n. Let

R = 3-1 - ‘- =
By, = ljegsr Pyyc Py Tiap By B ®0, R0 R, Licy Pyg »

H, =h _,-h

g =hg~hy = 0 A+ - bo A(p) .

The theorem will follow if it is shown that U(0) is asymptotically
normal with mean Z:-l B (v, - w) ([ £2) + (b /2) and variance
Z:-l Bi/lz for any choice of 6. To show this, Theorem 4 of Sievers

(1978) can be directly applied once the four assumptions there are

verified.

The first assumption requires max (":l - ;)2 + 0 . This follows
1<i<n '

from Assumption "AB) .

2

The second assumption requires 21("1 «WE » o, >0 . This

follows from Assumption (A,) using 21("1 - ';)2 = @' x;; X, © /n.

The third assumption requires ) " Bi/ max Hi + o,

i
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To examine this, write i

L Ll a®+-cto a@ L a0+ 4] )
2 2 : 2 2
bk’ Iy ATQL) +eee + 1 AT(R) max{8) Ay(1) + -0+ + 6 & (7)) .

= Fl FZ say .

Now
e" Vn 0
Fl 3 tr (V)
~n
o 6'vVv o
- min [a_“.

8 2 go=1 tr(v )

lln

’
Aln + o0 + Apn

where Aln'i AZn il :-Apn are the ordered eigenvalues of Yn . Let
Al 5_12 b j_kp denote the ordered eigenvalues of V . Then by
Assumption (AS)

i
8. e n Mo . M e |
WS Wl T T ¥R |

A

A

as n +» and this shows F1 is bounded from below away from zero.

Now with the Cauchy-Schwarz inequality used in the denominator
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L AW+ ] Ae

g' gm;x [Ai(l) + ... +Zi(P)]

F2

I A ¥ e # ] Ai(n

>-—'

P max{A [ T S ,Ai(p)}

2 2
G I, A I, AL ()
TR max Ai(l) max Ai(?)
i i

assumption is met.

The fourth assumption requires that Xi < ij/ Z:l =~ 0.

Then, with Assumption (Al) » it follows that Fz > as n*°®

The asymptotic behavior of Fl and F2 then guarantee that the third

= Gl 62 say .

Now using the Cauchy-Schwarz inequality in the numerator

g' g [Z!fj azi Q) + ¢cc + 21<j .ij(p)]

G, <
1- 2 3.
I QD) + oo + T, A{(P)

f ey (
. ﬁ_q_‘_L_ ! $ 2_.1__.1_2’_
21 A (1) Ii (P)

Now
i 21<j hij & hﬁlel 511(1) * °°* +9 a-i(p)]z 21 (1) + 4 21 (P)
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Then with Assumption (Az) , 1t follows that G1 +0 as n+ =,

Now G2 = 1/F1 and F. was shown to be bounded away from zero.

1
Thus G2 is bounded and with the behavior of G1 the fourth assumption

is met.

Proof of Lemma 5,1

It is sufficient to show that the result holds for each coordinate of
R(A) . The first coordinate, say RI(A) will be considered. Let

ti (e) = Al(le - xil)/JE + eo0 + Ap(x - xip)//; . Then Rl(é) can

h )2

be written

-3/2 2

Ry(8) = o L g () W+ (JED] 8D () T,

where

+1 if t, ) < Yj el Vel

=4{ -1 if 0 < Yj e tij(é)
0 otherwise .

Actually “13 can be + 1/2 when ties occur but this will be ignored

since such events have zero probability.

In both cases tij (e) >0 and tij(e) <0, E(wij) =

G(0) - Gty (8)) = -, (A) g(E;4(8)) , where Iség)l < ey, ]

Then using g(0) = ffz ’

|
i
¥
i
:
t
3
H
{

-

T ——

SR e ———
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BR @) =2 2 8 () £y, ) (200) - 8CEg (D]

From Assumptions (A3) and (A6), it follows that for any e> 0

max [g(0) - g(Eij(A))l <€ uniformly in A € & for n sufficiently
1<j . .

large. Further, noting that zi<j(xjk-x1k) (xj,'-xu)/(;) -

LGy - %) (kg -x)/m, write ] tij(‘.‘)’ () = 8" XL X An .

Then, with use of the Cauchy-Schwarz inequality,

@] < e a2 (I LGP 0z x am}l?

With Assumptions (A,.) and (A7) and the fact that € is arbitrary,
it must be that E(RI(A)) +0 as n +», uniformly in A€y .

The variance of Rl(e) is
e -3 2
Var(R, (4)) = n 21‘1 aij(l) Var(wij)

a2 5 1 e, e, @) covliy LW, .
1< k<t ' <
1,4k, 2)

Using Assumptions (A3) and (A7) , it can be shown that Var(kl(A)) +0

as n+o , uniformly in A €¢# . With the mean and variance tending

to zero, the lemma follows.

i o e s i
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Proof of Theorem 5.1

It is sufficient to show that the result holds for each coordinate of R(A).
Suppose Rl(A) is considered. Rl(A) and t 14 (A) are given in the
preceeding proof.

Let € >0, €' >0 be given.

From Assumptions (A‘.) and (A7) there exists a bound Bo such that

SV NI R A R S L/ s S X

Now choose & so that 3 g(O)Bo § < €/3 . Then partition g into

closed subsets 91 o sletay ‘M say, so that A,A' ¢ . implies

la, - 4" | < 6 forall k=1,...,p and m=1,..., M and that

L
(m) = max t,.(A) and t,,(m) =min ¢t ,(a) .
i 2ed 13- 13 Mes 13-

M U
8 = Um-l ﬂm & Let & 1
Then from Assumptions (Aa) and (A7) , it can be shown that

- L
n 3/2 21<j aij(l)ltgj(m) - tij(m)l = BOG 5

For 1<i<j<n and m=1,..., M , define random variables

L U
1 if tij(m) _<_YJ sk tij(m) .
Sij(n) =
0 otherwise
and Q = a-3/2 Ei<j ‘:Lj(l) Sij(m) 5
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Under Assumptions (A3) e (Al.) 5 (AG) s (A7) and B =0 it can be

shown that

~-3/2 U L
E(QQ) = n Licy 24D I6(e ) - Gy, (@))]

< Zg(O)Bo §
for all m=1,..., M and for n sufficiently large.

Further, it cam be shown that

Vat(Qm) +0 as n+o

for all m>=1, ..., M.

Now for each m =1, ..., M, choose a point Ane 8 a

Then note that

e n~3/2 T,(8//0) - T,(8 /)| <q
Ae E o
- m

for each m=1,..., M. Further, by Lemma 5.1,
POR (D] > e/3) < e'/2m

for each m=1,..., M and for n sufficiently large.

Putting some pieces together, for each m =1, ..., M and for

n sufficiently large




7o

sup [R (&) - Ry (A)| < sup n’3/2|T1(A/v’5) - 1,08, /) |
o S i ; :

A

-3/2

+ (0) )|e,.a) - t,,()
sup n g Zi<j aij I ij = ij m |

eeﬂm

IA

Q + g(O)Bo 8
ol A E(Qm) + E(Qm) + 3(0)1306
20 = E(Qm) + e/3
Further, for each m =1, ..., M and for n sufficiently large

P(sup [R;(A)] 2> ¢)
ded =

< P(sup IR @) - R ()| +R (B <€)
Ae § Y t %
~ m

< P@Q - B(Q) +€/3+ Ri(A) > )

A

P(Q, - E(Q) > €/3) + P(|Ry (8| > ¢/3)

IA

(9/52) Var(Qm) + e'/2M

Ia

e'/2M + e'/2M

=¢'/M

Finally, for n sufficently large
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|v

P(sup |R,(8)| 2> ¢) e P(sup |R,(8)] €)
Ry 1 1 e b

Ae® Eesm

Ia

Ia

):-1 e'/M

el

and the proof is completed.
Proof of Lemma 6.2

When (1/112)Cn in the expression R(A) is replaced by C , the proof

of this lemma is routine.

Proof of Lemma 6.3

Note that
3Q(a)  3D*(A)
—— = = 20”32[1a1/R) - T(0) - %% c a)

and use Lemma 6.1.

Proof of Lemma 6.4 A 5
With Lemma 6.3, the proof finishes exactly as in Jaeckel (1972), page 1454.

Proof of Theorem 6.1

Again use exactly the argument of Jaeckel (1972), page 1454, along with

Lemma 6.4,
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